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Computation of parametric x-ray production by relativistic 
particles in crystals under multiple Bragg diffraction 

I Ya Dubovskaya, S A Stepanov, A Ya Silenko and A P Ulyanenkoff 
Institute for Nuclear Problems, 11 Bobruiskaya Street. 220050 Minsk, Republic of Belarus 

Received 20 April 1993 

Abstrad An algorithm for computing spectral-angular and angular distributions of parametric 
x-ray radiation (m) prcduced by ullrarelscivistic particles in crystals under multiple Brag 
diffraction is developed. The algorithm is bcwd on the melhods applied in the dynamical theory 
of x-ray multiple drffraction. The angular diseibution of three-wave PXR angular distribution 
into lhe simulated forbidden reflex (222) in the Ge crystal is computed. I1 is shown thar using 
multiple FXR generalion it is possible 10 genenle x-ray beams wilh double angular collimation 
= 1 angular s2 and spectral width ? IO-). 

1. Introduction 

Parametric (quasi-Cherenkov) x-ray radiation (PXR) is the radiation produced by a relativistic 
particle moving with a constant velocity through a crystal target. One of the main 
peculiarities of PXR is that the x-rays can be observed not only at a small angle along 
the paRiCle movement but also at a large angle (the Bragg angle). The physical principle of 
PXR production is similar to that of Cherenkov emission in the optical band but it strongly 
requires periodic (crystalline) media. The fact is that the refractive index of x-rays in 
uniform media is known to be smaller than unity (the phase speed of x-rays is more than 
the light speed constant) and therefore x-ray Cherenkov radiation is impossible. However, 
under the Bragg condition for x-rays emitted in a crystal, the situation can change. Due 
to dynamical diffraction the refractive index of x-rays can stand out above unity and, as a 
result, the Cherenkov condition can be fulfilled. This mechanism of PXR production was 
first predicted in [ I ]  and experimentally confirmed in [2,3]. 

From the viewpoint of applied physics PXR can be considered as a tunable frequency 
source of quasi-monochromatic x-rays [4]. In this connection the production of PXR under 
multiple diffraction is of great interest as the multiwave Bragg geometry is assumed to 
provide an enhancement of PXR spectral-angular density [SI. Moreover, the measure.ments 
of PXR angular distributions under four- and eight-wave diffraction conditions were carried 
out in [7,8]. In these experiments intensive narrow peaks resulting, as the authors supposed, 
from the multiwave diffraction, were observed. 

Up to now the theoretical interpretation of PXR experiments was restricted to the case 
of two-wave diffraction when simple analytical expressions can be derived [8,9]. The 
multiwave generation of PXR can only be calculated using computers and has not been 
carried out because the respective algorithm was not developed. One of the solutions of 
this problem was proposed in [ 10,111 on the basis of matrix exponentials. However, we 
think that this approach is convenient only for analytical analysis of the main features of 
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PXR and is not applicable to computations because of the need to compute exponents of 
complex matrices. 

In this paper the algorithm of computer simulation of multiwave PXR spectral-angular 
and angular distributions is developed on the basis of methods applied in the dynamical 
theory of x-ray multiple diffraction [12, 131. The result is illustrated with the computation 
of three-wave PXR angular distribution in the direction of the simulated forbidden reflex 
(222) in the Ge crystal. 

As we will show below the algorithm is suitable for an arbitrary multiwave PXR 
production. Therefore, its application to simulation of experiments [6,71 requires only 
an account of the specific experimental geometry and spreadings. A detailed analysis of 
these experiments will be made in a separate publication. 

I Ya Dubovskuya et al 

2. Computation of PXR spectral-angular density 

Let a relativistic charged particle (for definiteness, an electron) be incident on a crystal at 
such an angle that pseudophotons of particle electromagnetic field with a frequency o and 
wave vectors directed along the particle velocity v satisfy the Bragg diffraction condition for 
several crystallographic planes with reciprocal lattice vectors h, g. . , . (see figure I@)) .  To 
find the x-ray wave field produced by the particle we should determine the Green-function 
of the problem and calculate its convolution with a current density produced by the moving 
particle. As shown in [ I ] ,  the Green function can be expanded into a series of solutions of 
the homogeneous x-ray diffraction problem in the crystal. The substitution of this expansion 
into the convolution integral allows us to obtain the following expression for a number of 
PXR quanta emitted by a particle, for example, in a reflex h (we assume h = c = I ) :  

where the integration is carried out over time t L  = L / ( v .  n) of particle travel through 
the crystal target, L is the target length, n is the unit vector normal to the crystal surface, 
r = ut is the radius vector of the particle coordinate, kh = ov+ h is the wave vector of a 
photon diffracted by crystallographic planes of h, o = I  k I, and d o  and dS2 are the spectral 
and angular intervals where x-rays are detected. The magnitude of Pk.w = dNk,,/dw dSZ 
is the density of a spectral-angular distribution. The field amplitude E;-)*@, U )  is the kth 
component of the Green-function expansion in the solutions of the homogeneous problem. 
For a crystal with a finite size this field has an asymptotic form of a sum of a plane wave 
and incoming spherical waves. Previously. it was shown (see, for example, [I]) that the 
solutions of E;-’ and ET’ are connected by the following relationship: 

where EL” is the solution of the homogeneous diffraction problem describing the scattering 
of a plane wave by a crystal. 

So, the calculation of the E;;’ field can be reduced to the problem of multiple diffraction 
of a plane x-ray wave being incident on a crystal from the point where the detector, which 
records PXR photons with the wave vector kn, is placed (see figure I(h)). 
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Figure 1. An illusvation of h e  Vansition from the geometry of PXR emission (a) to the geometry 
of B r a g  diffraction of an extemal wave propagating in the reversed direction (b). 

Let us carry out the reversion of wave vectors in accordance with (2) and use the 
algorithm of the multiple Bragg diffraction problem, presented in [121 and [13]. The 
reversed wave vectors kh are introduced as k; = -km (m = 0 ,  h. g. . . .) and kl, is 
assumed to be the wave vector of the incident wave. Then the reciprocal lattice vectors m' 
contained in the diffraction equation for the kk wave are connected with the initial vectors 
m by the relationship m' = h - m. Really, 

kh = -km = - ( k o + m )  = -(kh - h+m) = I C '  It + (h -m)  = kl, +m'. 

Also, let n' be the crystal surface normal introduced at the surface of k; incidence in the 
way adopted in the diffraction problem. Obviously, n' = -n for the Laue case and n' = n 
for the Bragg one, i.e. n' = +h/ I yh ])n (ym are the cosines of the angles between the 
x-ray wave vectors and n). As will be shown below, only two waves determine the PXR 
production: one that penetrates along the particle movement direction kh (0' = h) and one 
that is 'incident' from the registration point IC; (h' = 0). That is why it is convenient to 
denote the corresponding vectors in the following way: /cg = kh, 0" = 0 and k; = kh, 
h" = h; the primes will be omitted below. 

Under the multiple Bragg diffraction the x-ray wave field E!+X)(T. o) can be represented 
inside a crystal as a sum of transverse Bloch waves of U and 71 polarizations, which travel 
in all diffraction directions IC, and correspond to 2 N  dispersion branches [13] ( N  is the 
order of multiple diffraction): 

E!+,'(T, w )  = e;. D~(T) (3) 
s=o.r m 

where em are the unit vectors of u and rr polarizations (e; I IC,, e; I k,, e; I e;)). One 
has some freedom in choosing the directions of these vectors. We use the way adopted in 
1121 and (131, which is convenient for the case when all the reciprocal lattice vectors 
h, g ,  . . . are in the same plane. This is: 

e; = [Sm x hnll I [sm x hnl I e; = [e; x s,] 
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where h,, = [ h  x g] is the normal to the plane and sm = k, /o  are the unit vectors 
along k,. 

Parameters h‘jl are the coefficients of dispersion branches excitation which can be 
determined from the boundary conditions (see below); 02’’ are the field amplitudes for 
each branch. The parameters 
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a, = [(ko t m)* - w2]/2wzy, m = 0, h, g ,  . . . (5 )  

determine the deviation of an incident wave from the exact Bragg condition for the respective 
reflex. It should be noted that our definition of a, differs by 1/2ym from that commonly 
used (y, = (sm . n)). This definition was adopted to make the formulae more compact. 

The parameters c ‘ j ’  determine x-ray refraction at the crystal boundary as a function of 
am : 

km ‘1’ - - k m - w ( c ( j )  - a&. (6) 

The above relation results from the conservation of x-ray frequency under Bragg diffraction, 
the preservation of k ,  tangential components at surface refraction and the fulfillment of the 
condition k!,? = k;’ + m for the Bloch waves in the crystal. 

The wave amplitudes D:’) and the parameters &) are sought as eigenvectors and 
eigenvalues of the dynamical diffraction equations in the crystal. which have the form 
[12,13]t: 

Here 

G;;, =  am^,&. - ( i /2ym){xmm,(e~ -e$) + ix,,.[(s, Q .s,,)(e; .e;,) 

+ (e; . S,.)(S, . e:.)]) (8 )  

is the 2N x 2N scattering matrix, xmml and x,$,, are the dipole and quadrupole components 
of the expansion of the crystal dielectric susceptibility X(T, w )  in a Fourier series over the 
reciprocal lattice vectors. To compute xmm, and x:mt for an arbitrary x-ray frequency we 
used the program described in [14]. 

The set (7) is simply solved with a computer because the methods of numerical analysis 
of the eigenproblem are well developed, including the case of an arbitrary complex matrix. 
We used the reliable routine from [ IS ]  which was based on the reduction of the matrix to 
upper Hessenberg form and the LR algorithm. 

To find the coefficients A‘j) one has to employ the boundary conditions for the wave 
amplitudes. For the plate-shaped crystal the conditions are. 

P~(o) = S , ~ [ P  cos(q) + P sin(p)l (9) 

f Equations (1) are not valid one or more of the x-ray beams makes a grazing angle with the surface less lhan the 
critical angle of total external reflection (E 0.1-1‘). The two-beam w i n g  case has been considered in 1171 and 
we plan 10 analyse a multiple-beam one in our next work. 
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for the hue-case waves (ym z 0), and 

for the Bragg-case waves (ym < 0). 
Here amO is the Kroneker symbol; q designates the angular deviation of the 'incident' 

polarization from e:. Equations (9) with regard to (4) may be rewritten in the matrix form 

where the following matrix has been introduced 

The set of linear equations (10) is solved with respect to A'jl by the Gaussian method 

Some remarks are in order here. 

(I) As the particle produces x-ray photons with all polarizations simultaneously, one 
has to summarize the intensities over polarizations. The procedure includes the solution of 
(10) for the two right-hand terms; one is for o-polarized 'incident' rays (U, = 0) and the 
other for n-polarized rays (U, = 90"). Then the obtained coefficients Abi' and Ay' are used 
separately for computation of PXR intensities and the results are combined. 

(2) If the crystal is thick (compared with x-ray absorption) the solutions of (7) with 
Im dj) > 0 should not be taken into consideration as they describe the waves reflected 
from the far boundary of the crystal plate. In this case the boundary conditions (9a) are not 
accounted for either and the total number of equations in (IO) is reduced. The reader can 
find a detailed description of this reduction in [13]. 

Incidentally, we have found the wave fields inside the crystal as the solutions of (7) and 
(10). Substituting them in ( I )  and taking into account (2x4)  we obtain 

using a computer. For this purpose an appropriate routine from [I51 was applied. 

2 
x Jdtexp[i(kkT'iwt) -im(&) -am)(n'.r')l1 (12) 
0 

where the sum over p denotes the summation over 'incident-wave' polarizations. 
Let us express the coordinate vector in (12) in terms of time. In this case we have 

to account for the fact that in the B r a g  case the coordinate origins of the diffraction and 
emission problems coincide and in the Laue case are misplaced by v t ~ :  T = P' t v t ~ .  
Therefore 

v(t - t L )  for emission in the Laue-we reflex (yh > 0) 
for emission in the Bragg-case reflex (yh c 0). (13) 1 V I  

r'(1) = 
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We should also note that the term m = h in the summation over m is much greater than 
the others because the index of its exponent is small and can be equal to zero (neglecting 
absorption). Thereby. this term can give rise to strong Cherenkov emission. Neglecting the 
other terms corresponding to waves propagating under large angles to v and canying out 
the integration in (12) taking account of the relation f L  = L/ I y; I and equation (13) we 
obtain 

where the following designation is used: 

For a thick crystal equation (14) may be simplified 

Equations ( 1 4 t (  16) provide the computation of the spectral-angular PXR distribution 

Concluding, the proposed simulation algorithm of multiwave Pm production consists 

( I )  evaluation of 2) and all /c, on the basis of the given reciprocal lattice vectors m 

(2) selection of the reflex h for which PXR production will be computed; 
(3) evaluation of the vectors kk, hk and &m of the reversed diffraction problem and 

(4) computation of the crystal susceptibilities xmm, and xi,,; 
(5) filling up the scattering matrix Chi, using equations (8) for given a,; 
(6) solution of eigenproblem (7) and evaluation of dj) and Dil l ;  
(7) filling up the boundary condition matrix C&, in accordance with (1 I ) ;  
(8) solution of the boundary problem (IO) and evaluation of 

(9) evaluation of Q‘j’ using equation (15); and 
(IO) computation of P m  spectral-angular density by (14) or (16). 

for an arbitrary number of Bragg reflexes involved, i.e. they solve the problem. 

of the following phases: 

and the frequency o of PXR production: 

transition to the diffraction problem notations; 

and A!’ for the two 
‘incident’ polarizations; 

3. Construction of spectral-angular PXR distributions 

If we intend to study fk., depending on variations of o and the diffraction angles we need 
to: 

(i) determine how h, kh and v depend on the angles and So/w; 
(ii) use the dependences in the evaluation of a,, Q‘j’ and (v. e;); and 
(iii) substitute the obtained a, and Q”’ into (8) and (14). 
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Starting the analysis one reveals that, in two-wave PXR production, an arbitrary direction 
of particle motion through a crystal is a Bragg one. In fact, as the particle simultaneously 
emits x-rays with all frequencies, one can always match the Bragg condition (a = 0) with 
some frequency. The situation is quite analogous to that of irradiation of the c~ystal by a 
collimated ‘white’ x-ray beam. From the Bragg condition for an x-ray quantum emitted 
along U (kt = o e G )  one can find (see (16)) that 

(we6 + h)Z - 0 p  = 0 (17) 

and therefore 

05 = -h2 /2 (G.  h) (18) 

where G = u/u = v(l  + iy-’) is a unit vector along v; y = E / m  is the gamma factor of 
the relativistic particle with energy E .  

In the multiple-diffraction case the situation is not so arbitrary because the vector 
oec must fit at least two conditions like (17). Therefore, it must have an origin on 
the normal & to the plane built by vectors h, g. . . . (see figure 2). Tilts of ?J in the 
plane defined by ztg and h, cause the movement of the ciigin along hn and thereby the 
variation of (the variation of the Ewald sphere radius). The conditions of multiple Bragg 
diffraction are preserved in this case. Otherwise, the tilts in the perpendicular direction 
(along qv [ve x &I/ I [VB x &] I) cannot be compensated and give rise to deviations 
from the exact multiple Bragg diffraction conditioni. Therefore, the vector U may be 
represented in the following form: 

U = U ~ ( I  - 4s:) + e,p, = 6s - 6 g ( i ~ - ~  + 40:) + &. (19) 

where 8, is the small angle between particle velocity and W E .  The latter is supposed to fit 
the multiple Bragg condition 

(w& + m)2 - U; = 0 m = h, g. . . , , (20) 

To determine the variations of b one has to recollect that it was introduced as the 
‘incident’ wave vector of the diffraction problem, being antiparallel to the momentum of 
x-ray photons generated in the direction of PXR registration. Therefore, this wave vector 
may be represented in the form 

t Note that if vectors h. g. t. . . . do not lie in a common plane (as in [6] and U]) then qi, must have its origin 
at ule crossing point of several h.. In this case the direction of panicle incidence into the crystal and the Bragg 
frequency are fixed, 
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Figure 2. Geomepy of nonap1ana.r threewave diffraction of an x a y  photon emitted by a 
panicle with velocity v. 

is the wave vector matching the exact Bragg condition of the diffraction problem. In fact, 
with regard to (20) and the connection m‘ = h - m one can find that 

(khB’ + m‘)’ - kp = 0 m’ = h‘, g‘, . . . . (23) 

The angles 81 and & introduced in (21) determine the angular deviations of ko from the 
exact Bragg condition. The term in (21) containing 8ojo characterizes the variation of 
length of ko due to variations of x-ray frequency. The vectors 91 and qz are the unit 
vectors in the directions of 8, and 8, taking q1 I k;”, q 2  I gB’, qI I qz. The choice of 
the directions is usually given by directions in which the experimental angles are measured. 
More frequently used variants are 

We use (a). 
To obtain the equation for kh one can make use of the following relation which is easy 

derived from (6): 

kh = ko + h - W f f h n .  0.4) 

Substituting (21) and (22) into (24) we obtain 

(3) 
18) 

k h  = - ~ B @ B  + ko [8o/~ - $(e; + 8;) +we& - o s f f h n .  
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Finally, substituting (19). (21) and (25) into (5) and (15), we arrive at 

e"' = O B (  f(v-' + 0; + 6; 4- 6':) + Y h ( d j '  -ah) - Q U [ 7 W h  + (h/Q)6O/o - Q]}.(27)  

We would like to pay attention to a weak (square-law) dependence of Q'j' on angle Q", 
i.e. deviation of a relativistic particle incidence direction from the multiwave condition. This 
provides good possibilities of observing multiwave PXR production in experiments because 
the averaging over Qu due to a particle multiple scattering by a crystal will not have a 
strong effect. 

Let us average equation (27) over the spread of the angle Qy. If the primary deviation of 
the particle velocity from the exact Bragg condition is not too large then the second bracket 
in (27) can be dropped and we can replace 6,' by 0:+S: in the firsf bracket (see [l]). Here 6': 
is the mean square angle of multiple scattering given by the formula 0,' = ( E , / E ) 2 ( L / L ~ ) ;  
E, = 21 MeV; Ln is the radiation length for the crystal. Thus, carrying out the averaging 
we obtain 

e"' = o B Y h  + 6"' - ah) (28) 

where = (y,-'+S:+e;+S,'+6:)/2~*. Finally, applying (19) and (25) and the definitions 
of e; and qu one may obtain the expression for (v .e;) in the linear approximation with 
respect to angles: 

(V *CL) = . Ash) - $8su (29) 

where 6'" is the Kroneker symbol; Ash = (kh - kLB')/oe = Q + kAB'So/02 - ahm 

angular density of PXR on 6'1, & and &o/o. Examples will be presented in section 6. 
Equations (26k(29) give the possibility of investigating the dependences of the spechal- 

4. Computation of angular distributions 

To compute the PXR angular distributions one has to integrate (14) and (16) over all passible 
deviations of PXR frequencies from the Bragg one OB t: 

In principle, the integration of (16) can be carried out numerically. However, the 
conventional algorithms will not work because the integrand function consists of a set of 
very narrow parametric resonance peaks, satisfying the condition 

Re Q"' = 0. (31) 

t It is also necessary to summarize over high-order Bragg frequencies h. 3 0 s  . . .. because the waves with 
vectors Zk. 3k. . . . also undergo multiple diffraction on recipmcal lanice vectors 2m. 3m.. , .. We leave out this 
summation in assumption that the x-ray detector allows us to cut off rhe high-order frequencies. 
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The peak width with respect to Gojo is of the order of Im Q'j' Y h t ' j '  'v Im x h ,  while 
the integration band is Y IO I ,yh 1, i.e. 16-104 times greater. Therefore, we have tn find 
the frequency coordinates of PXR resonance peaks. From (31) and (28) we obtain 

I Ya Duhovskayn et a1 

Ree=f fh -@.  (32) 

Substituting (32) in (7) we arrive at the equation set for the remnance frequencies: 

Re(G)D = Re(6)D = ( a h  - 02)D.  (33) 

The unknown value 6 w / o  is presented in these equations through em, which, in accordance 
with (26), are linear in h / o .  A weak dependence ,ymm,(o) can be neglected. In principle, 
the solution of (33) is reduced to searching for the roots of a polyncmial of rank 2N - 2. 
where N is the diffraction order. It is. however, known that the numerical root search of 
high-order polynomials is a very unstable procedure. Therefore, it is important to find a 
more effective algorithm. Equation (33) with regard to (8) and (26) can be transformed to 
the following form: 

A .  D = (6o/o)B. D (34) 

where A and B are square matrices: 

(35) 

(36) 

ss' 10) f f ( o !  2 3.' = (am - 
B;;. = (fh" - f,o)s;;. 
U$) = U ,  Ibo,m=o 

+ 0 )amm, -&,,(e; . e:)/2ym 

&,, = Rexmm, f; = o&;'(kf' .  m). 

Equation (34) has the form of the generalized eigenvalue problem and we can apply 
for its numerical solution the algorithm described in [I61 and realized in [15]. As the 
maximum power of 6o/w in this equation is 2 N  - 2, we shall obtain 2N - 2 roots and the 
same number of PXR peaks. However, some roots can be complex t. We take these roots 
into consideration too if their imaginary part is of the same order or less than the real one. 
In the case of complex roots the integration is carried out round Re(Go/o). 

The numerical integration limits are chosen in accordance with 

(60/o);;,-cImxo <6o/o < (6w/o);&+fcImXa 

where (Bo/o)$~, is the ith peak coordinate; c e 10'-1@ is the input data parameter. The 
intervals are reduced in the case of crossing limits from neighbouring peaks. 

Thus. in this section the method of computing PW angular distributions in the case 
of multiple-diffraction PXR production was developed. This makes the simulation of 
experiments possible in principle. However, the time for the computation is very long: 
'v I O  values per minute for a pc 486 (50 MHz) when computing the three-wave generation, 
while the experiment simulation requires a dishibution Y 100 x 100 to be computed and 
the performance drops as the third power of the diffraction order. So, computation rate 
enhancement is a very significant problem. 

t Complex roots will be complex conjugated in pairs because h e  equation has real coefficients. 
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5. Methods to increase the computation rate 

Because of the publication space limits let us consider only the main notions on the time 
reduction of the PXR angular distribution computation, without details of their realization. 

5.1. Rejection of weak peaks 

There are 2N - 2 PXR peaks for each angular point (6'1, 6'2). However, the only intense 
peaks are those for which the paramewic resonance condition coincides with the diffraction 
maximum, i.e. the peaks for which I ah I <  1. The computation time could be reduced by 
several times if we analyse the maxima of the PXR spectral-angular density in the centres 
of peaks and reject the weak peaks. 

5.2. Reduction of the dimension of the diffraction matrix 

Let us assume that an intense peak of the PXR spectral-angular distribution has been found. 
It is reasonable to analyse the value of reflex parameters a, and exclude lines and columns 
corresponding to reflexes with I a, [>>I xm I in the diffraction matrix, i.e. to decrease the 
order of diffraction before integrating over So/o in the neighbourhood of this peak. This 
procedure ensures a further computation-time reduction by four to eight times since seeking 
the eigenvalues (7) and solving the boundary problem (IO) are accelerated. 

5.3. Analytic integration of the PXR peaks 

The analytic integration procedure has been used earlier in [8] and [9]  for the two-wave 
PXR production. The notion is based on the fact that the width of a PXR peak for frequency 
(IT h I x h  1) is 10i-103 times less than the width of a Bragg peak (-1 xh I). Therefore, 
the parameters AY'@) and Di'"(o) can be considered as constant within a peak and taken 
outside the integral sign in (30). and the change of &'(o) can be allowed for io linear 
approximation. After that the integral (30) is easily calculated analytically if the derivative 
d d j ) / d o  in the centre of the peak is known. 

For the multiwave case the arialytic integration is also possible but complicated by the 
three following circumstances. 

( I )  Several peaks exist and the contributions of intersection domains into the total 
integral should be accounted for. In  particular, the structure of the scattering matrix (8) 
shows that if I ab [> I  x h  1, then the roots E" and E" are close ( E  N ah) and, therefore, the 
peaks of U and ir polarizations are always close. 

(2) The derivative &'j'/dw can only be computed numerically, and since every point 
has 2N roots (the function # ( w )  is many valued), careful precautions should be taken in 
order to ensure that the roots are not confused at the computation of the derivative. 

(3) A multiwave Borrmann effect may appear in a narrow domain comparable with 
S w / o  IT Im I x h  I. In this case the solutions of the diffraction problem change in the 
same 6o/o scale as the PXR peak. To exclude errors in this domain, one should refrain 
from analytical integration if several parameters a, simultaneously satisfy the condition 

Our experience shows that analytic integration is possible in 3 W 0 %  of cases and that 

On the whole, the use of the described and some other methods allows us to reduce the 

I am 1<1 x m  I. 

it provides an advantage in the computation rate by 2-10 times. 

duration of computation by 3 M  times. 
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6. Computation of the PxR generation into the forbidden reflex simulated by three- 
wave diffraction 

I Ya Dubovskaya et al 

The algorithm developed has been used for simulation of the PXR generation with wavelength 
A = 1.54 A into the forbidden reflex (222) in the Ge crystal (,ym = 0). The reflex (222) 
is indirectly excited (simulated) by the three-wave Bragg diffraction on the planes (311) 
and (T33) (the Renninger effect). The computation parameters are as follows: the crystal 
surface coincides with the plane (01 i); the crystal plate thickness L = 250 pn;  the electron 
with the energy E = 1.2 GeV is incident on the surface at an angle of 52.9": the radiation 
length of the electron multiple scattering is LR = 15 x 104 pm. As all the diffraction planes 
are perpendicular to the surface, the symmetrical Laue case of diffraction occurs. 

The intensity of radiation into the forbidden reflex is high only in the multiwave domain. 
Therefore, the multiwave effects are most pronounced in this case. 

1 -~ 
-50 0 loo 

Figure 3. WO-dimensional angular disvibulion of three-wave PXR in the case of the simulated 
forbidden Bragg reflex in Ge (U) ,  projection of this distribution into the reference plane ch. (b )  
and the seetion along 81 with ch. = IO' (c). 
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The general view of the PXR angular distribution is given in figure 3(a). The angular 
distribution has the form of a slightly curved ‘prolongated touch’ with divergence parameters 
N 5 x 5000 angular s. This distribution has a qualitative difference from the two-wave 
distribution, which is rather wide in both directions. 

Let us make a more detailed comparison (see, e.g., [SI). Figures 3(b) and (c) show 
the projection of the angular distribution into the reference plane 82 and the section along 
81 with 82 = IO’. If the projection in figure 3(b) is qualitatively similar to the two-wave 
case, the section in figure 3(c) shows the basic difference: its width is N 16 times less 
than that along &, while the width of two-wave PXR peaks is of the same order in both 
directions. The difference of the angular distribution divergence relative to the angles 81 
and 6% is attributed to the fact that the angle 81 is varied in the surface plane and & in the 
plane normal to the surface. Therefore, scanning in 8, causes the changes in all a,, while 
the contribution of the 8, variations to a, could be compensated by the change in So/o. 

Figure 3(c) clearly shows the fine structure of the PXR angular distribution. There are 
four’peaks ( 2 N  - 2 in a general case); however, one of them is considerably more intense 
than the others. The half-width of this peak is less than 5 angular s. 

It is essential that the spectral-angular distribution has a divergence N 5 x 5 angular 
s, i.e. it is collimated in the two planes. Thus, the considered three-wave PXR, conceming 
its spectral and angular characteristics, is similar to x-ray tube radiation collimated by two 
mutually perpendicular monochromator crystals. Hence, the multiwave PXR could be used 
as a source for investigations of x-ray multiple diffraction, small-angle scattering, etc. The 
wavelength of this source could be easily tuned by changing the angle of electron incidence 
on the crystal surface. 

7. Conclusions 

The algorithm and the program for the computation of the PXR specual-angular and 
angular distributions produced by ultrarelativistic particles in crystals under multiple Bragg 
diffraction have been developed. 

It is shown that using the multiple PXR generation it is possible to generate x-ray beams 
with double angular collimation cz 1 angular s2 and spectral width Go/o N 
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